A Method for Fully Automated Measurement of Neurological Structures in MRI
نویسندگان
چکیده
A method for fully automating the measurement of various neurological structures in MRI is presented. This technique uses an atlas-based trained maximum likelihood classifier. The classifier requires a map of prior probabilities, which is obtained by registering a large number of previously classified data sets to the atlas and calculating the resulting probability that each represented tissue type or structure will appear at each voxel in the data set. Classification is then carried out using the standard maximum likelihood discriminant function, assuming normal statistics. The results of this classification process can be used in three ways, depending on the type of structure that is being detected or measured. In the most straightforward case, measurement of a normal neural substructure such as the hippocampus, the results of the classifier provide a localization point for the initiation of a deformable template model, which is then optimized with respect to the original data. The detection and measurement of abnormal structures, such as white matter lesions in multiple sclerosis patients, requires a slightly different approach. Lesions are detected through the application of a spectral matched filter to areas identified by the classifier as white matter. Finally, detection of unknown abnormalities can be accomplished through anomaly detection.
منابع مشابه
Automated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier
Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...
متن کاملComparison of Various Blood Pressure Measurement Techniques with Standard Office Based Blood Pressure Mesurement
Introduction: In order to control Hypertension, it is necessary to understand the methods of blood pressure measurement. Recent guidelines emphasize on employing appropriate blood pressure measurement techniques and white coat hypertension. Definition and methods of blood pressure measurement have changed in the American guideline based on SPRINT trial (Systolic Blood Pressure Intervention Tria...
متن کاملFace Detection with methods based on color by using Artificial Neural Network
The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...
متن کاملBrain Volume Estimation Enhancement by Morphological Image Processing Tools
Background: Volume estimation of brain is important for many neurological applications. It is necessary in measuring brain growth and changes in brain in normal/abnormal patients. Thus, accurate brain volume measurement is very important. Magnetic resonance imaging (MRI) is the method of choice for volume quantification due to excellent levels of image resolution and between-tissue contrast. St...
متن کاملApplication of Magnetic Resonance Imaging (MRI) as a safe & Application of Magnetic Resonance Imaging (MRI) as a safe & non-destructive method for monitoring of fruit & vegetable in postharvest period
To investigate and control quality, one must be able to measure quality-related attributes. Quality of produce encompasses sensory attributes, nutritive values, chemical constituents, mechanical properties, functional properties and defects. MRI has great potential for evaluating the quality of fruits and vegetables. The equipment now available is not feasible for routine quality testing. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004